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a b s t r a c t

In this paper, we study the Transportation Fleet Maintenance Scheduling Problem (TFMSP)
for a Logistic Service Provider (LSP) with many sub-companies (or branches). In the
literature, Goyal and Gunasekaran’s [S.K. Goyal, A. Gunasekaran, determining economic
maintenance frequency of a transportation fleet, International Journal of Systems Science
23 (4) (1992) 655–659] presented a mathematical model for the TFMSP to determine the
economic maintenance frequency of only a single company. However, an LSP usually owns
many branches that serve for the operations of transshipments of different areas of a
country inmost real cases. There exists significant room to reduce average total costs for an
LSP ifmanagers coordinate economicmaintenance frequencies amongbranches. Therefore,
we were motivated to propose an extended model of the TFMSP with many branches in
this study. In order to solve this problem, we first conduct a full analysis on the extended
model. By utilizing our theoretical results, we propose an efficient search algorithm that
effectively solves an optimal solution for the extended TFMSP. Our numerical results show
that thewhole transportation fleet systemof an LSP can obtain significant cost savings from
the coordination policy.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the Transportation Fleet Maintenance Scheduling Problem (TFMSP) for a Logistic Service Provider
with many sub-companies (or branches). In the literature, Goyal and Gunasekaran’s [1] presented a mathematical model
for the TFMSP to determine the economic maintenance frequency of only a single company. However, it is a common
practice that a logistic service provider usually owns many branches that serve for the operations of transshipments of
different areas of a country in most real cases. If managers of the logistic service provider could conduct better coordination
among branches, there exists significant room to reduce average total maintenance costs. Therefore, in this study, we were
motivated to extend the TFMSP in two aspects: First, we not only derived an extended model of the TFMSP with many
branches, but also conducted full theoretical analysis on theoretical properties of the extendedmodel. Second, we proposed
a search algorithm that effectively solves an optimal solution for the extended TFMSP.

As mentioned in Goyal and Gunasekaran [1], the problem of determining economic maintenance of machines
in a manufacturing system or transportation fleets in a company has been dealt with extensively in management
science/operations research/industrial engineering (see [2–8]). But, researchers pay limited attention to the problem of
determining operating and maintenance schedules for only a single company (or single manufacturing system).
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Before presenting the extended model of the TFMSP, we first introduce the assumptions made and the notation used
later. The logistic service provider has a total of B branches. There are mi groups of vehicles in the ith branch. We denote
the number of vehicles in the jth group of the ith branch as nij. We assume that all the vehicles need to be maintained
periodically. Also, the decision maker plans maintenance schedules of the vehicle groups in some basic period, denoted by T.
Maintenance work on a group of vehicles is carried out at a fixed, equal-time interval that is called themaintenance cycle for
that group of vehicles. The vehicles in the jth group of the ith branch are sent for maintenance once in kij basic periods where
kij is a positive integer. (Therefore, the maintenance cycle for the vehicles in the jth group of the ith branch is kijT.) We note
that the extended TFMSP takes into account only planned maintenance, but not unplanned vehicle failures in maintenance
scheduling.

We consider two categories of costs in the extended TFMSP, namely, operating cost andmaintenance cost. The operating
cost of a vehicle depends on the length of the maintenance cycle and it is assumed to increase linearly with respect to time
since maintenance on the vehicle. Specifically, the operating cost per unit time at time t after the last maintenance for a
vehicle in the jth group of the ith branch is given by fij(t) = aij + bijt where aij is the fixed cost and bij indicates the increase
in operating cost per unit of time. Also, for each vehicle in the jth group of the ith branch, we assume that it takes Xij units of
time for its maintenance work and the utilization factor of a vehicle in the jth group of the ith branch on the road is Yij where
Xij and Yij are known constants. (One may refer to Yanagi [9] for further discussions on the utilization factor of a vehicle.)
Therefore, the actual time during which a vehicle can operate is equal to Yij(kijT − Xij), and the total operating cost for a
vehicle in the jth group of the ith branch is given by∫ Yij(kijT−Xij)

0
fij(t)dt =

∫ Yij(kijT−Xij)

0
(aij + bijt)dt

= Yij(aij − bijXijYij)kijT + 0.5bijY2
ij k

2
ijT

2
− XijYij(aij − 0.5bijXijYij). (1)

The average fixed cost of maintenance for a vehicle in the jth group of the ith branch is given by sij/
(
kijT

)
. On the other

hand, as maintenance work is carried out at intervals of T, a fixed cost (denoted by S) will be incurred for all vehicle groups
scheduled for maintenance in each basic period.

Following the assumptions above, we derived the extended TFMSP as problem (P0).

(P0) Minimize Z(k11, . . . , k1m1 , . . . , kB1, . . . , kBmB , T) =
S

T
+

B∑
i=1

mi∑
j=1

Φij(kij, T) + C (2)

where
Φij(kij, T) =

nijUij

kijT
+ nijVijkijT,Uij = sij − XijYij(aij − 0.5bijXijYij) and Vij = 0.5bijY2

ij . Also, C =
∑B

i=1
∑mi

j=1 nijYij(aij − bijXijYij) is a
constant since all the parameters are given in its expression.

Then, solving the problem (P0) is equivalent to obtain the optimal solution for the problem (P) as follows.

(P) Ψ(k11, . . . , k1m1 , . . . , kB1, . . . , kBmB , T)

= inf
T>0

{
S

T
+

B∑
i=1

mi∑
j=1

Φij(kij, T)|kij ∈ N+, i = 1, . . . , B, j = 1, . . . ,mi

}
. (3)

In the extended TFMSP, the managers of the logistic service provider need to determine T (i.e., the basic period) and(
k11, . . . , k1m1 , . . . , kB1, . . . , kBmB

)
(i.e., the frequency of maintenance for vehicles in each group of every branch) so as to

minimize total costs incurred per unit time.
We outline the rest of this paper as follows. In Section 2, we survey the literature related to the TFMSP. In Section 3, we

present a full theoretical analysis on the optimal cost curve of the problem (P). Based on our theoretical results, we derive
an effective search algorithm that efficiently solves the extended TFMSP in Section 4. In Section 5, we employ a numerical
example to demonstrate implementation of the proposed algorithm. Finally,we address our concluding remarks in Section 6.

2. Literature review

Goyal and Gunasekaran’ [1] proposed their solution approach for the TFMSP based on two equations that were derived
by setting the first derivative of the total cost function with respect to decision variables to zero. Then, in term, an initial
vector of maintenance frequencies for vehicles in each group can be determined. If the values of maintenance frequencies
are not integers, then select the nearest non-zero integer. Once a vector of the maintenance frequencies was determined,
we obtained an optimal value of the basic period accordingly. Such an iterative process was kept on until two consecutive
vector of the maintenance frequencies were the same.

Later, van Egmond, Dekker and Wildeman [10] presented further discussions on Goyal and Gunasekaran’s search
procedure. They indicated that the function total cost function is not convex as Goyal and Gunasekaran [1] assumed.
And, since the frequencies of maintenance for vehicles in each group of need to be integers, the determination of global
optimization is not as easy asGoyal andGunasekaran suggested. They also showed that it did not always obtain theminimum
value for the objective function when one rounded multipliers of the basic period to the nearest non-zero integer. Finally,
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they indicated that Goyal and Gunasekaran’s search procedure often stopped after its first iteration without obtaining an
optimal solution. These three problems explained why Goyal and Gunasekaran’s solution did not guarantee obtaining an
optimal solution. In fact, it was often stuck in a local optimal solution. However, van Egmond, Dekker and Wildeman’s [10]
only mentioned that one needed to try different starting values to find an optimal solution, but without proposing a new
solution approach to solve the TFMSP.

One may notice that the joint replenishment problem (JRP) is actually a special case of the extended TFMSP with
nij = 1, aij = 0.5Xij/Yij, bij = 1.0/Yij and B = 1. Please refer to van Eijs [11], Viswanathan [12,13], Fung and Ma [14] and
Lee and Yao [15] for further reference on the JRP. Arkin et al. [16] proved that the JRP is NP-hard, i.e., the JRP is not solvable
by polynomial-time algorithms. Therefore, it is obvious that the extended TFMSP is also NP-hard. Probably, because of its
difficulty, not many researchers addressed their efforts to propose new solution approaches after van Egmond, Dekker and
Wildeman’s [10] study. To the best of the authors’ knowledge, there exists no solution approach that solves the extended
TFMSP in the literature. Therefore, we are motivated to propose a new solution approach in this study.

3. Theoretical analysis

In this section, we discuss some theoretical results that provide insights into the optimal cost function
Ψ(k11, . . . , k1m1 , . . . , kB1, . . . , kBmB , T). Our theoretical results facilitate derivation of the search algorithm presented in
Section 4.

We define a new index `(i, j) by combining the subscription of i and j into a single index ` by `(i, j) ≡
∑

i mi−1 + j where
i = 1, . . . , B, j = 1, . . . ,mi and m0 = 0. Also, let L be the total number of vehicle groups in all branches where L =

∑B
i=1 mi.

For the rest of paper, we use the index ` for indicating a particular vehicle group in lieu of `(i, j) to make our presentation
more concise. Following the Eq. (3), we have

Ψ(k11, . . . , k1m1 , . . . , kB1, . . . , kBmB , T) = inf
T>0

{
S

T
+

L∑
`=1

Φ`(k`, T)|k` ∈ N+, ` = 1, . . . , L
}

. (4)

From the right-side of (4), we learn that the terms are separable. Therefore, we are motivated to study the properties
of Φ`(k`, T) since they shall establish foundation for further investigation of the function Ψ(k11, . . . , k1m1 , . . . , kB1, . . . ,
kBmB , T).

Proposition 1. For any given k` ∈ N+, the function Φ`(k`, T) satisfies the following properties for T > 0, where ` ∈ {1, . . . , L}.
1. Φ`(k`, T) is strictly convex.
2. Φ`(k`, T) has a minimum for T = x∗

`/k` with x∗

` given by:

x∗

` =

√
U`/V` (5)

where Uij = sij − XijYij(aij − 0.5bijXijYij) and Vij = 0.5bijY2
ij .

3. The function Φ`(k`, T) obtains its minimal objective function value by

2n`

√
U`V`. (6)

Proof. Wemay prove these assertions by simple algebra. �

Let us define a new function g`(T) by taking the optimal value of k` at any value T ′ > 0 for the function Φ`(k`, T) as
follows.

g`(T) ≡ inf
k`∈N+

{Φ`(k`, T
′)|T = T ′

∈ R+
}. (7)

Consequently, the problem (P) can be re-written by

(P1) Γ(T) = inf
T>0

{
S/T +

L∑
`=1

g`(T)

}
(8)

where the function Γ(T) is the optimal objective function value of problem (P1) with respect to T.
Before having further analysis on problem (P1), we first graphically display the function curve of g`(T) in Fig. 1. Note that

the curve of the g`(T) function is actually their lower envelope.
In the following discussion, we will have further analysis on these two observations and will formally prove them as the

base for deriving the theoretical properties for problem (P1) later.

3.1. The junction point

We define a “junction point” for g`(T) as a particular value of T where two consecutive convex curves Φ`(k`, T) and
Φ`(k` + 1, T) concatenate. These junction points determine at “what value of T ′′ where one should change the value of k`

so as to obtain the optimal value for the g`(T) function. We first derive a closed-form for the location of the junction points.



1306 J.-Y. Huang, M.-J. Yao / Computers and Mathematics with Applications 56 (2008) 1303–1313

Fig. 1. The function curve of the gi(T) function.

We define the difference function 1`(k, T) by

1`(k, T) = Φ`(k + 1, T) − Φ`(k, T)

= −
n`U`

T(k + 1)k
+ n`V`T. (9)

We note that 1`(k, T) is the cost difference between using k and k + 1 as its multiplier. Since the first derivative of the
function 1`(k, T) is always positive for all T > 0, 1`(k, T) is an increasing function with respect to T. Suppose that the
search algorithm proceeds from an upper bound toward smaller values of T, we evaluate 1`(k, T) from positive values, to
zero and finally, to negative values. Let w be the point where 1`(k, T) reaches zero. Assume that k is the optimal multiplier
for T > w. This scheme implies that one should keep using k until it meets w. From the point w onwards, the value of g`(T)
can be improved by using k + 1 as its optimal multiplier. We note that w is the point where two neighboring convex curves
Φ`(k` +1, T) andΦ`(k`, T)meet. Importantly, such a junction pointw not only provides us with the information on at “what
value of T” where one should change the value of k so as to secure the optimal value for the g`(T) function.

By the rationale discussed above, we derive a closed form to locate the junction points by letting1`(k, T) = 0 as follows.

δ`(k) =

√
U`

V`(k + 1)k
=

√
2(s` − X`Y`(a` − 0.5b`X`Y`))

b`Y
2
` (k + 1)k

. (10)

Note that δ`(k) indicates the location of the kth junction point of the function g`(T) (from its right-side). By (10), the following
inequality (11) holds

δ`(v) < · · · < δ`(k + 1) < δ`(k) · · · < δ`(2) < δ`(1) (11)

where v is an (unknown) upper bound on the value of k.
Theorem 1 is an immediate result from (10) and (11).

Theorem 1. Suppose that k∗(w−) and k∗(w+) are the optimal multipliers of the left-side and right-side convex curves with regard
to a junction point w of the g`(T) function, then k∗(w−) = k∗(w+) + 1.

The following corollary is a by-product of (11), and it provides an easierway to obtain the optimalmaintenance frequency
k∗

`(T) ∈ N+ for the g`(T) function for any given T > 0.

Corollary 1. For any given T > 0, an optimal value of k∗

`(T) ∈ N+ for the g`(T) function is given by

k∗

`(T) =

−
1
2

+
1
2

√
1 +

4U`

V`T2

 (12)

with d.e denoting the upper-entier function.
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Proof. For any given T > 0, an optimal value of k ∈ N+ for the g`(T) function is such that T(k)
` ≤ T < T(k−1)

` . Equivalently, the
value of k must satisfy√

U`

V`(k + 1)k
≤ T and T <

√
U`

V`(k − 1)k
.

Therefore, we have k2 + k −
U`

V`T
2 ≥ 0. Since k must be positive, we have

−
1
2

+
1
2

√
1 +

4U`

V`T2
≤ k <

1
2

+
1
2

√
1 +

4U`

V`T2
.

Thus, we complete the proof. �

3.2. Some insights into the optimal cost function

Here, we shall utilize our theoretical results on the Φ`(k`, T) and g`(T) functions to gain more insights into the Γ(T)
function.

First, Propositions 2 and 3 characterize the Γ(T) function as follows.

Proposition 2. The Γ(T) function is piece-wise convex with respect to T.
Proof. The first term in the Γ(T) function, i.e., S/T, is a convex function with respect to T. The second term, i.e.,

∑L
`=1 g`(T),

is a piece-wise convex function since it is the sum of L piece-wise convex functions. Since the Γ(T) function is the sum of a
convex function and L piece-wise convex functions, it is obvious piece-wise convex with respect to T. �

Proposition 3. All the junction points for vehicle group `, will be inherited by the Γ(T) function. In other words, if w is a junction
point for vehicle group `, w must also show as a junction point on the piece-wise convex curve of the Γ(T) function.
Proof. Recall that the function Γ(T) is a separable function where Γ(T) = infT>0{S/T +

∑L
`=1 g`(T)}. Without loss of

generality, assume that w is a junction point for vehicle group `, but not a junction point for the other (L−1) vehicle groups.
Then, there must exist ε > 0 such that the followings hold.
1. The curve for

∑
j6=` gj(T) is convex in the interval of [w−ε,w+ε] since each one of g`(T) is convex in [w−ε,w+ε] where

j 6= `,
2. g`(T) is convex in the intervals of [w − ε,w] and [w,w + ε].
3. S/T is convex in the intervals of [w − ε,w] and [w,w + ε].
Since Γ(T) = S/T + g`(T)+

∑
j6=` gj(T), Γ(T) is still convex in the intervals [w− ε,w] and [w,w+ ε]. Therefore,w is a junction

point on the curve of Γ(T). �

To make our notation more concise, we define k ≡ (k1, . . . , kL) to represent a vector of maintenance frequencies.
Theorem 2 is an immediate result of Theorem 1 and Proposition 3.

Theorem 2. Suppose that k(w−) and k(w+), respectively, are vectors of optimal multipliers for left-side and right-side convex
curves with regard to a junction point w in the plot of the Γ(T) function. Then, k(w−) is secured from k(w+) by changing at least
one of k` by k∗

`(w
−) = k∗

`(w
+) + 1.

4. The search algorithm

In this section, we propose a search algorithm that solves the optimal solution for the problem (P1) in (8).
Our theoretical results in Section 3 provide us an important foundation to design the proposed search algorithm for

solving the problem (P1). Since the proposed algorithm searches along the T-axis, we shall define the search range by setting
a lower bound and an upper bound on the T-axis, which are denoted by Tmin and Tmax, respectively. We note that the bounds
Tmin and Tmax are derived by asserting that the optimal solution in [Tmin, Tmax] must be no worse than any solution outside of
[Tmin, Tmax]. Also,wemust utilize our theoretical results on theΓ(T) function, especially, the properties of the junction points.

In the following discussions, we first discuss how to find lower and upper bounds of the search range. Then, we
demonstrate how to use the junction points to proceed with the search. Finally, we summarize our proposed search
algorithm.

4.1. The lower and upper bounds

We derive a lower and an upper bound on the search range by a relaxed problem for the problem (P1). By relaxing the
constraints k` ∈ N+ by k` ≥ 1 for ` = 1, . . . , L, we obtain a relaxation, namely (R), for the problem (P1) as follows.

(R) Γ (R)(k1, . . . , kL, T) = inf
T>0

{
S/T +

L∑
`=1

Φ`(k`, T)|k` ≥ 1, ` = 1, . . . , L
}

. (13)

Clearly, for any T, the problem (R) secures an optimal value no larger than that of the problem (P1). Namely, the optimal cost
curve of the problem (R) serves the lower envelope for that of problem (P1) as shown in Fig. 2.
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Fig. 2. The optimal cost curves of the problem (P1) and the problem (R).

Denote as T∗

P and T∗

R the optimal value of T for the problems (P1) and (R), respectively. We observe that solving (R) is
equivalent to obtain the optimal solution for the problem (R1) as follows.

(R1) h(T) = inf
T>0

{
S/T +

L∑
`=1

g(R)
` (T)

}
(14)

where

g(R)
` (T) ≡ inf

T>0
{Φ`(k`, T)|k` ≥ 1, ` = 1, . . . , L}. (15)

By Proposition 1, it follows that

g(R)
` (T) =

{
Φ`(1, x∗

`) if T ≤ x∗

`.
Φ`(1, T) if T > x∗

`

(16)

where x∗

` is expressed in (5). So, the function g(R)
` (T) is convex, increasing, and continuously differentiable on (0,∞).Without

loss generality, we assume that x∗

1 ≤ x∗

2 ≤ · · · ≤ x∗

L , the strictly increasing derivative h′(·) is given by

h′(T) =



−S

T2
if T ≤ x∗

1
i∑

`=1
n`V` −

(
S +

i∑
`=1

n`U`

)/
T2 if x∗

i ≤ T ≤ x∗

i+1, 1 ≤ i ≤ L − 1

L∑
`=1

n`V` −

(
S +

L∑
`=1

n`U`

)/
T2 if T ≥ x∗

L .

(17)

By setting the derivative of h(·) in (17) to zero, we have the following lemma to locate the optimal solution T∗

R for (R1).

Lemma 1. Assume without loss generality that x∗

1 ≤ x∗

2 ≤ · · · ≤ x∗

L . If it holds that `∗
≡ max{1 ≤ ` ≤ L : h′(x∗

`) < 0}, then the
optimal solution T∗

R of (R1) is given by

T∗

R =

√√√√(S +

`∗∑
`=1

n`U`

)/
`∗∑

`=1
n`V`. (18)

Let TC(T∗

R ) be the objective function value of the problem (P) at T∗

R , i.e., TC(T∗

R ) = Ψ(k(T∗

R ), T
∗

R ). Obviously, TC(T∗

R ) serves as
an upper bound on the optimal objective function value of the problem (P1). Denote Tlow and Tup as the lower and the upper
bounds of the search range. In the following lemma, we will show that a lower and an upper bound on T∗

R are given by the
two values of T where the objective function of (R) is equal to TC(T∗

R ). The derivation of the bounds is done by the following
proposition.

Proposition 4. Let Tlow and Tup be the smallest and the largest T, respectively, for which the objective function of (R) is equal to
TC(T∗

R ). Then, the optimal value of T for the problem (P) must lie between Tlow and Tup, i.e., T∗

p ∈ [Tlow, Tup].

Proof. Since the objective function of (R) is strictly convex, we clearly have the results that Tlow ≤ T∗

R ≤ Tup. Consequently,
the objective function value is larger than TC(T∗

R ) for T < Tlow. Since (R) is a relaxation of (P), so that is a lower bound on T∗

P .
Similarly, we may proof that T∗

P ≤ Tup. �
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We note that the onemay easily locate the bounds Tlow and Tup by some line searchmethods (see Cormen, et al. [17]) and
set the bounds by letting Tmin = Tlow and Tmax = Tup.

Intuitively, if wemay shorten the search range on the T-axis, wemay reduce computational efforts in the proposed search
algorithm. Therefore, we aremotivated to find another upper bound and another lower bound to possibly shorten the search
range.

First, we present another upper bound on the search range by the Common Cycle (CC) approach in which it requires that
k` = 1 for all `, i.e., all of the vehicle groups share the same maintenance cycle. We set

TCC =

√√√√(S +
∑
`

n`U`

)/∑
`

n`V` (19)

where TCC is the optimal maintenance cycle for the CC approach. Next, we will show that it is appropriate to set Tmax = TCC
in the following lemma.

Lemma 2. For the Γ(T) function, there exist no local minima for T > TCC .

Proof. For any given vectork, onemay obtain its localminimum,
^

T (k), by taking the first derivative of the objective function
Γ(T) and equating it to zero.

^

T (k) =

√√√√(S +

L∑
`=1

n`U`

k`

)/
L∑

`=1
n`V`k`. (20)

It is obvious that
^

T (k) ≤ TCC since k` ≥ 1 for all `. Therefore, there exists no local minimum for T > TCC . �

Denote the optimal objective function value of (P1) and the optimal value of the basic period by Γ ∗ and T∗

P . Next, we
derive a lower bound on the search range in the following lemma.

Lemma 3. The value β1 serves as a lower bound for T∗

P

where β1 =
2S
ΓU

(21)

where ΓU is an upper bound on the optimal objective function value of the problem (P1).

Proof. For any given vector k, by substituting its local minimum
^

T (k) into the objective function of the problem (P1) in (8),
one shall obtain its optimal objective function value by

Γ(k, T) = 2

√√√√(S +

L∑
`=1

n`U`k`

)(
L∑

`=1
n`V`k`

)
. (22)

By the expressions of
^

T (k) in (20), it follows that Γ ∗T∗

P > 2S, so T∗

P > 2S/Γ ∗. Given ΓU is an upper bound on the optimal
objective function value of the problem (P1), it obviously holds that T∗

P > 2S/ΓU since ΓU
≥ Γ ∗. �

Note that we need an upper bound ΓU to obtain β1 as indicated in Eq. (21). The lower the value of ΓU , the tighter the
lower bound β1. Here, we have an easy way to obtain a good value of ΓU . First, we shall locate T0 = min`

√
0.5U`/V`. Denote

k∗(T ′) ≡
(
k∗

1(T
′), k∗

2(T
′), . . . , k∗

L (T
′)
)
as the vector of optimal maintenance frequency with respect to a given value of T ′. Then,

we obtain the optimal k∗(T0) corresponding to T0 by (12). Since the objective function value of any feasible solution serves
as an upper bound on Γ ∗, we have an upper bound by ΓU

= Γ(k∗(T0), T0) from Eq. (22). So, a lower bound is obtained by
2S/ΓU .

Following the discussions above, we obtain the search range [Tmin, Tmax] by setting Tmin = max(Tlow,β1) and Tmax =

min(Tup, TCC). Next, we are going to elaborate the proposed mechanism for searching all the local optimum existing in the
interval [Tmin, Tmax].

4.2. Proceed with the search by the junction points

Note that the proposed algorithm proceeds with the search from the upper bound Tmax to lower values of T until it meets
the lower bound Tmin. Denote k∗(T) as the vector of optimal multipliers at T. Before starting the search, we first obtain
k∗(Tmax) by (12) in Corollary 1. Then, by Propositions 2 and 3, each junction point δ`(k`) provides the information that one
should change the optimal maintenance multiplier of the vehicle group ` from k` to (k` + 1) at δ`(k`) to obtain the optimal
value for the Γ(T) function. Therefore, during the search, we need to keep an L-dimensional vector 1 ≡ (δ1(k1), . . . , δL(kL))
where ` = 1, . . . , L. The vector 1 records the location of the next junction point where each vehicle group should change
its optimal maintenance multiplier. Since the algorithm searches toward lower values of T, one shall change the multiplier
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Table 1
The data set of the demonstrative example

nij sij Xij Yij aij bij

Branch 1 10 60 0.75 0.92 25 9
20 40 0.95 0.95 40 8

Branch 2
24 110 0.85 0.87 55 7.5
10 75 0.65 0.90 30 6.5
8 65 0.92 0.93 45 8

S 200

for the particular vehicle group with the largest value of δ`(k`) to correctly update the vector of optimal multipliers. Let Tc
be the current value of T where the search algorithm reaches. Denote π as the index for the vehicle group with the largest
value of δ`(k`), i.e.,

π = argmin
`

{δ`(k`) < Tc}. (23)

When proceeding with the search from Tc, we need to update the vector of optimal multipliers at δπ(kπ) by

k∗(δπ(kπ)) ≡ (k∗(Tc) \ {kπ}) ∪ {kπ + 1} (24)

where “\” denotes set subtraction.
Note that Theorem 2 implies that the vector of optimal multipliers k∗ is invariant in each convex sub-interval (i.e.,

between a pair of consecutive junction points) on the Γ(T) function. Hence, this step actually obtains the vector of optimal
multipliers for all the values of T ∈ (δπ(kπ), Tc). Then, we should check if the local minimum for k∗(Tc) exists in the convex
sub-interval (δπ(kπ), Tc) since such a local minimum could be a candidate for the optimal solution. (For any given set of k,
one may obtain its local minimum,

^

T (k), by Eq. (20).)

4.3. The proposed algorithm

We are now ready to enunciate the proposed search algorithm as follows.

1. Obtain the lower bound and the upper bound of the search range by:
(a) Compute the value of T∗

R by (18) and secure the values of Tlow and Tup by line search methods.
(b) Obtain TCC by (19), compute T0 = min`

√
0.5U`/V` and obtain k∗(T0) (i.e., the optimal vector of multipliers

corresponding to T0) by (12).
(c) We calculate ΓU

= Γ(k∗(T0), T0) by Eq. (22). Then, we have another lower bound by β1 = 2S/ΓU .
(d) Set Tmin = max(Tlow,β1) and Tmax = min(Tup, TCC).

2. Set Tc = Tmax and obtain k∗(Tc) by (12). Also, set TC∗
= TC(k∗(TCC), TCC) and K∗

= k∗(TCC) to start the search.
3. If Tc ≤ Tmin, then go to step 5.
4. Proceed with the search to the next convex sub-interval:

(a) Set π = argmin`{δ`(k`) < Tc} and k∗(δπ(kπ)) ≡ (k∗(Tc) \ {kπ}) ∪ {kπ + 1}. Then, let Tc = δπ(kπ).
(b) Calculate

^

T (k∗(Tc)) by (20) and compute TC(k∗(Tc),
^

T (k∗(Tc))).
(c) If TC∗ > TC(k∗(Tc),

^

T (k∗(Tc))), set TC∗
= TC(k∗(Tc),

^

T (k∗(Tc))), K∗
= k∗(Tc), and T∗

= Tc.
(d) Go to Step 3.

5. Output the optimal solution (K∗, T∗) with the corresponding minimal cost TC∗.

5. Numerical experiments

In the first part of this section, we employ a numerical example to demonstrate implementation of the proposed
search algorithm. Then, we conduct sensitivity analysis on parameters of the extend model for the TFMSP to gain more
managerial insights into the benefit from coordination of maintenance scheduling among the branches of a logistic service
provider.

5.1. A demonstrative example

In this section, we use a two-branch example to demonstrate the implementation of the proposed search algorithm. In
this example, there is a total of two groups and three groups of vehicles in the first and the second branch of the logistic
service provider, respectively. The data set for this example is given in Table 1.

In the first step, we compute the value of T∗

R and find the bounds Tlow and Tup. We locate the optimal T∗

R of the
problem (R1) by T∗

R = 2.180. We use (12) in Corollary 1 to get the vector of optimal maintenance frequencies k(T∗

R ) =

(k11, k12, k21, k22, k23) = (2, 1, 2, 2, 1) to obtain a feasible solution for the problem (P) at T∗

R . Therefore, we have the objective



J.-Y. Huang, M.-J. Yao / Computers and Mathematics with Applications 56 (2008) 1303–1313 1311

Table 2
The 7 local optimum obtained by the proposed search algorithm

m1 m2
^

T (k∗(Tc)) TC(k∗(Tc),
^

T (k∗(Tc)))

k11 k12 k21 k22 k23

1 1 1 1 1 3.800 $4179.00
1 1 2 1 1 2.860 4142.71
1 1 2 2 1 2.580 4106.47
2 1 2 2 1 2.316 4107.73
2 1 2 2 2 2.167 4117.19
2 1 3 2 2 1.831 4109.24
2 1 3 3 2 1.725 4101.12

function value by TC(T∗

R ) = TC(k(T∗

R ), T
∗

R ) = $ 1716.76. Next, we locate the bounds Tlow and Tup by some line search method
by finding the two values of T where the objective function of (R1) equals to TC(T∗

R ). Then, we obtain the search range by
Tlow = 1.540 and Tup = 3.072. Next, we have β1 = 0.220 secured by β1 = 2S/ΓU where ΓU

= TC(k∗(T0), T0) = $ 1788.05
and T0 = min`

√
0.5U`/V` = 0.996. Let K∗

= k∗(T0), T∗
= T0 and Γ ∗

= ΓU . Also, we get TCC = 3.800 by (19). Therefore, we
have Tmin = max(Tlow,β1) = 1.540 and Tmax = min(Tup, TCC) = 3.800.

Here, we start the search with Tc = Tmax = 3.800. Since Tc > Tmin, we proceed with the search to the next convex sub-
interval by setting π = argmini{δi(ki) < Tc} = 3. We locate the next junction point at δ3(k3) = 3.546. With the vector of
optimal multipliers being k∗(Tc) = (1, 1, 2, 1, 1), we obtain the local minimum

^

T (k∗(Tc)) = 2.864 and the corresponding
optimal objective function value TC(k∗(Tc),

^

T (k∗(Tc))) = $ 4142.71. We proceed to the next convex sub-interval by setting
π = argmini{δi(ki) < Tc} = 4. Then let Tc = δ4(k4) = 3.335. Therefore, we move to the new junction point by letting
with the set of optimal maintenance frequency as k∗(δπ(kπ)) ≡

(
k∗(Tc) \ {k4}

)
∪ {k4 + 1} = (1, 1, 2, 2, 1). We obtain

the local minimum by
^

T (k∗(Tc)) = 2.5795. The optimal objective function value corresponding to this local minimum
is TC(k∗(Tc),

^

T (k∗(Tc))) = $4106.47.
In this example, we visit in total only 7 convex sub-intervals before the search algorithm terminates. The optimal solution

is obtained by T∗
= 1.7254 andK∗

= (2, 1, 3, 3, 2)with the optimal annual total cost given by $4101.12. Table 2 summarizes
the vectors of optimal multipliers for these 7 convex sub-intervals and their corresponding local minima obtained before
the search terminates.

We may employ Goyal and Gunasekaran’s [1] approach (which is abbreviated as G&G for the rest of paper) to solve the
TFMSP for two branches independently. We obtain the optimal solution for the first branch at T∗

= 2.680 with K∗
= (1, 1)

and the optimal objective function value being $1386.80. Also, the optimal solution for the second branch is given by
T∗

= 4.738 and K∗
= (1, 1, 1) with the optimal objective function value being $2779.46. The total annual cost of the

solution obtained from the G&G approach (without coordination) is around 1.59% larger than the optimal solution from the
extended TFMSP with coordination.

In order to observe the benefit from coordination among branches, we should compare our solution with solving the
TFMSP for two branches independently using the proposed search algorithm. For the first branch, we solve the optimal
solution by T∗

= 1.956 and K∗
= (2, 1) with the optimal objective function being $1,376.11. We have the optimal solution

at T∗
= 4.738withK∗

= (1, 1, 1) and the optimal objective function value being $2,779.46 for the second branch. Therefore,
this example shows that coordination of maintenance scheduling among branches leads to a cost saving of 1.33%.

5.2. Sensitivity analysis

This section presents our sensitivity analysis on parameters of the extended TFMSP model. We would like to observe
how parameters in the model affect cost saving from the coordination of maintenance scheduling among vehicle groups in
different branches (which is abbreviated as the coordination policy later).

Here, we conduct our sensitivity analysis based on the demonstrative example presented in Section 5.1. To analyze
the sensitivity of a parameter, we will observe the change in magnitude of cost saving from the coordination policy after
perturbing the value of that particular parameter. In our numerical experiments, we have four levels of perturbation in
parameters of the extended TFMSP model, namely, replacing the parameter with 50%, 75%, 125%, and 150% of its original
value, respectively. Also, we change the parameter only one at a time (but keeping other parameters the same) to avoid that
the confounding effects from different parameters could make our analysis difficult for interpretation.

To facilitate our discussion later, we first define some notations. We denote TCG&G(no-coordination) as the objective
function value of the solution obtained from the G&G approach without coordination. Since the last names of the authors
are Huang and Yao, we use H&Y as the abbreviation for the proposed search algorithm. We denote TCH&Y(coordination) and
TCH&Y(no-coordination) as the objective function values of solutions obtained by the proposed search algorithm for scenarios
with and without using the coordination policy, respectively.

Next, we employ the optimal solution from the proposed search algorithm as a benchmark for comparison. We define
CSG&G as a measure for the cost saving comparing to the solution obtained from the G&G approach without coordination as
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Table 3
A summary of our sensitivity analysis

Parameters Perturbed values (%) The cost saving from coordination
CSG&G (%) CSH&Y (%)

S 50 1.58 0.96
75 1.62 1.18

125 1.69 1.62
150 1.90 1.90

sij 50 2.34 1.20
75 1.90 1.15

125 1.13 1.06
150 0.92 0.92

Xij 50 0.91 0.91
75 1.15 1.15

125 1.92 1.72
150 2.47 2.27

nij 50 2.38 2.38
75 1.95 1.74

125 1.61 1.22
150 1.59 1.09

aij 50 1.25 1.25
75 1.37 1.37

125 1.94 1.51
150 2.04 1.77

bij 50 1.48 1.08
75 1.69 1.21

125 1.81 1.42
150 1.86 1.48

shown in Eq. (25).

CSG&G =
TCG&G(no-coordination) − TCH&Y(coordination)

TCH&Y(coordination)
· 100%. (25)

Similarly, we may define CSH&Y as a measure for the cost saving compared with the solution obtained from the
coordination policy (while both solving the extended TFMSP model using the proposed search algorithm).

Table 3 summarizes the results of our sensitivity analysis. For example, the parameter S (i.e., the fixed cost incurred for
all vehicle groups scheduled for maintenance in each basic period) is the first parameter shown in Table 3. The measure of
the cost saving from coordination CSG&G increases from 1.58% to 1.90% when the value of S increases from 50% to 150% of its
original value. One may have a similar observation on the measure CSH&Y .

From Table 3, wemay have several interesting findings that may providemoremanagerial insights into the coordination
policy as follows.

1. The larger the value of S, the more significant the cost saving from the coordination policy. This observation matches
with our intuition since when the fixed cost incurred in each basic period is large, the LSP may gain more cost savings
from coordination among branches.

2. The larger the values of sij, the less the cost saving from the coordination policy. We note that when the fixed cost for
an individual vehicle group is significant, the LSP would pay more attention to the maintenance scheduling of individual
vehicle groups within a branch but have less emphasis on coordination among branches.

3. The larger the values of Xij, the more significant the cost saving from the coordination policy. We note that a larger value
of Xij implies a higher proportion of time for maintenance work in a maintenance cycle. Therefore, since maintenance
scheduling becomes an important issue in such a case, the coordination policy could lead to more cost savings.

4. The larger the values of nij, the less the cost saving from the coordination policy. When the values of nij are large, the
cost saving from coordination is not considerable since the costs incurredwithin a branch aremore significant than fixed
costs among branches.

5. The larger the values of aij and bij, the more significant the cost saving from the coordination policy. When the values of
aij and bij are large, our numerical results indicate that the value of basic period usually becomes longer in such cases.
If the managers did not coordinate among the branches in an LSP, the operating cost of vehicle groups becomes more
significant.

6. The value of cost saving is more sensitive to parameters Xij and sij, but less sensitive to parameters S and nij.
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6. Concluding remarks

In this paper, we study the Transportation Fleet Maintenance Scheduling Problem (TFMSP) for a Logistic Service Provider
(LSP)withmany branches. In order to solve this problem,we formulate an extendedmodel of the TFMSPwithmany branches
and conduct a full analysis on the extended model in this study. Also, by utilizing our theoretical results, we propose an
efficient search algorithm that effectively solves an optimal solution for the extended TFMSP. Our numerical results show
that the whole transportation fleet system of an LSP can obtain significant cost savings from the coordination policy.

In the area of supply chain management, researchers have devoted their efforts to analyze and emphasize the benefit
from the coordination of production and inventory policies among the firms in supply chains. To the best of the authors’
knowledge, this paper presents the first work on the coordination of maintenance scheduling among the branches in an
LSP. Hopefully, our study may draw attention from the interested readers and invite more researchers’ to investigate their
efforts on this topic.
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